A socket is used to mount the Arduino Nano to the robot, besides making the Arduino removable so that it can be used for other projects, this simplifies attachment to the rest of the machine. Alternatively you could buy a small breadboard for $4 (as shown in the second picture below from sparkfun.com) and zip tie it to the top in a similar way for more modular design.
In my case I wired the servos into D11 and D10, but you could use any of the PWM outputs, as shown in the first picture below. I then wired the battery to a free pin on the socket in between pins that I wired to the power for the arduino (Vin) and the servos, so that I could switch them on and off with jumpers. I smashed the legs of the socket outward so they are easy to access for expansions. Notice that this placement also makes the USB connection and reset buttons easily accessible, at the end of the robot.
To charge the battery, power can be applied by putting the jumpers in the off position (stored on the other side of the socket) and plugging charging leads into battery +, and ground. Again, for this battery the easiest charging method is to connect gator clips to the outputs of a 1.5-9V NiCd charger. If you are using a different type of battery charge accordingly.
Here is where the eraser comes in. If you have the assembled servo/wheel sets from step 2, you can put the belts on them with the servo that has a wire coming from the side upright and the other laying with its long end pointed toward the upright one, as shown in the fist picture. Pull them to light tension, so the belts are nearly flat but not taught, and measure the gap between the servos. Cut a section of eraser to wedge in this gap. This works like suspension, allowing the frame some flexibility while holding it in place under most forces it will encounter. It's the white part in the picture.
The battery fits in the crook between the upright and flat servos and the socket sits on top (second picture). Make sure the sockets legs are smashed outward for easy access. Then use one or two zip ties to strap the whole thing together, be sure the buckle is on the front or back, not underneath or above the socket, you don't want it to get in the way of ground clearance or plugging in the Arduino. If you are using the mini-breadboard variant, you may need to file the middle channel a bit deeper for the zip tie to set in.
Finally, plug in that Arduino (third picture), you can make the jumpers by simply bending some stripped wire with pliers.
This is built with an Arduino so that you can program it to do whatever you like. Here are the basics. Further expansions are covered next. To test things out you can upload the code and move the jumpers both to the on position.
Really, the basic code to build on is just this:
//---------------------------Start Code
#include <Servo.h>//Loads commands to create Servo objects which generate PWM signals
Servo leftDrive; // create servo object to control a servo
Servo rightDrive; //another servo object for the left side
void setup()
{
leftDrive.attach(11); // attaches the servo on pin 9 to the servo object
rightDrive.attach(10); // attaches the servo on pin 9 to the servo object
}
void loop()
{
//here put commands which drive the servos
//use the commands
//rightDrive.write(any number 0-180);
//leftDrive.write(any number 0 to 180);
//to set the servos turning 0 is full one way, 180 is full the other, 90 should be near stop
//which way is forward depends on your servos
}
//end code -------------------------------------
So that gives you an idea how simple this can be.
Here is a basic code example for just driving around in a square. Note that the video was with the delays set to 600, which resulted in a triangle, 450 gives you more of a square. (code starts after this line):
//------------------------------------------------------------------------------------------
#include <Servo.h>//Loads commands to create Servo objects which generate PWM signals
Servo leftDrive; // create servo object to control a servo
Servo rightDrive; //another servo object for the left side
int pos = 0; // variable to store the servo position
void setup()
{
leftDrive.attach(11); // attaches the servo on pin 9 to the servo object
rightDrive.attach(10); // attaches the servo on pin 9 to the servo object
}
void loop()
{
//example routine, drives in a square
turnRight();
driveForward();
turnRight();
driveForward();
turnRight();
driveForward();
turnRight();
driveForward();
}
//the following functions are examples, you could easily make the robot
//move on curved paths or at varying speeds by changing these numbers
//0 is full forward, 90 is stop and 180 is full reverse. The case may be the
//opposite for your build
//turns right about 90 degrees
void turnRight()
{
leftDrive.write(0);
rightDrive.write(180);
delay(450);
}
//turns left about 90 degrees
void turnLeft()
{
leftDrive.write(180);
rightDrive.write(0);
delay(450);
}
//drives straight for 1 second
void driveForward()
{
leftDrive.write(180);
rightDrive.write(180);
delay(1000);
}
//drives straight backward for 1 second
void driveBackward()
{
leftDrive.write(0);
rightDrive.write(0);
delay(1000);
}
//end code---------------------------------------------
So, the point of this is to be a platform. Making a robot just drive about can be fun, but the most fun is always making your own things. Since this is an arduino there is example code to add all kinds of controls, devices and sensors to customize your bot.
The idea I'm sharing here is how I made a compact simple to control robotic platform. I feel that showing you what to do with it exactly would not have much of a point, you can do whatever you like with it.
That said, I'll make some suggestions of how you could expand this robot without reinventing the wheel. Other Instructables are suggested to get into the low level details of these features, and links are provided to buy them where available. I didn't make these Instructables, but they will integrate nicely, that's the great thing about an online community after all:
Gripper
The easiest way to add a gripper is with another micro servo, one that isn't modified for continuous rotation. You would add its control to code simply by attaching another servo, and giving it a position command, as seen in step 6.
Here is an example which would fit right on:
https://www.instructables.com/id/How-to-make-a-robot-gripper/
The same method could be used to add a scoop or other manipulator as well.
If you want to just buy one, something like this would work nicely:
Jameco 1.3 inch gripper
Radio Control
A fun thing to add to any robot, there are piles of tutorials on how to do this with an Arduino.
You can do it with blue-tooth (easy but expensive)
https://www.instructables.com/id/how-to-Control-arduino-by-bluetooth-from-PC-pock/
Or you could use an XBee (easy, and less expensive)
Since the XBee is wider than the Arduino nano, and can't plug into it, I would actually suggest setting it over the nano and wiring it in around it.
Examples of the code needed are widely availible, heres an XBee library for arduino.
Of course, you could get an XBee/Arduino nano board, like this one from robotshop, and your robot would have a swanky tail.
You can do it with a bare transmitter receiver (cheapest, but requires knowing what you are doing):
http://www.robotshop.com/productinfo.aspx?pc=RB-Ons-02&lang=en-US
Detect movement (PIR)
This is actually remarkably easy, a PIR sensor compares the infrared map of its environment with one it has built over time. So it detects changes. They can be found for $10 at several stores including sparkfun and robotshop
These have everything integrated, and the output pin goes high for a few seconds when motion is detected. All you do is give it power from the battery and connect the output to an input pin on the Arduino. Then set an interrupt or check the state of the pin. As seen on the customization of the platform above. This lets your robot react when someone approaches.
Ultrasonic Range finding
Ultrasonic range finders are an inexpensive way detect the distance in one direction with decent reliability in the range of about 0.1 to 10 meters. They tick out ultrasonic pulses at about 10Hz and detect how long they take to return. Most pick up obstacles in a conical span, so they can be fooled by things that aren't really in the way. It's no LADAR or computer vision, but it costs 1/1000 as much.
This is also on the robot customization shown here. I used an HC-SR04 range finder and this library. I just got that from ebay for $6.
There is also support for the PING range finder: http://arduino.cc/en/Tutorial/Ping
And even if you use the cheaper one I used, this may help you understand how it works
GPS
If you want to give your robot a sense of its/his/her place in the world, there is example code to use a parallax GPS module on Arduino Playground here.
Future Steps
I'm planning a few fun projects with these. One will be to add wireless cameras, remote control, and little grippers, and then make tiny obstacle courses for them to explore in teams.
Another fun project would be to mount a Kinect on the roof and make a bunch of these with wireless act as a swarm in formation.
In general I'm going to use these as a basis for lots of projects, and I will be going into more detail about possible add-ons in that way. I would be very pleased to see this used in other Instructables and expanded. After all, sometimes you want to use a robot, but don't want to write about developing the basic stuff.