"I apologize if you find spelling errors or nonsensical text, my language is Spanish and has not been easy to translate, I will improve my English to continue composing instructables"
A year ago publish the design and implementation of a clock known as Arduino Watch Sport 1.0, and my only goal was to recycle some materials that usually go into a basket of rubbish, the result of carrying out this project was a clock with the following features.
And some of the materials used in the first version of the clock were:
Have you thought about buying a Smartwatch, but renunciaste do so because they are very expensive?. Well, it's time to put a little bit of work and create your own Smartwatch, placing your imagination to the test.
Arduino Watch Sport 2.0 is designed with the goal of awakening some minds which are hidden to join the challenge of creating new designs and prove that there is no need to have a lot of money to have a Smartwatch.
Arduino Watch Sport 2.0 is just a sample of what you can do when you have a passion for a particular topic, now is the time to start yours and give me new ideas for a new version, the Arduino Watch Sport 3.0. =D !
One of the most important features that characterize the Smartwatch is the management of social networks and the respective notifications, these are some of the notifications that you receive our watch:
Thanks to that technology has been advancing, the area of the creation of the new sensors have evolved enough to the point of having any number of sensors on the market, allowing the Smartwatch to be able to measure some of the variables present in our body, Arduino Watch Sport 2.0 wanted to measure the sigueintes variables:
Heart rate and oxygen saturation.
In addition to the foregoing features with some features more:
Volume of the vibrator
These were some of the materials used in the watch:
Thanks to the advantages offered by Fusion 360 you can see how the watch is assembled, each of the parts are available for download.
Autodesk Fusion 360 (free)
This is a powerful 3D modeling platform that's easy to learn but has endless potential. With it, you can design complex 3D objects for practically any kind of fabrication, digital or otherwise.
The entire electronic clock scheme was designed in Eagle PCB software.
I will leave the schema files to download from:
To create the watch's main circuit board, use a double-sided copper PCB. Perform the design on Eagle PCB software. The design files will leave them at the end of the instructable.
First, printed the top face, the underside of the PCB covered it with adhesive paper to protect the copper from the acid attack.
Second, place the PCB in a container with the acid and wait for 20 minutes for the acid to remove the exposed copper.
Thirdly, I removed the adhesive paper that protected the underside of the PCB
Fourth, print the pitas on paper, then transfer them by heat. After 2 minutes of warmth, with the help of water, start to remove the paper and expose the track.
Fifthly, I protected the tracks already made on the upper face using adhesive paper.
And finally place the PCB in the acidic container in order to remove the copper and draw the tracks on the underside.
If you’re ready to step your Arduino game up from older 8-bit/16MHz microcontrollers, the SparkFun SAMD21 Mini Breakout is a great landing spot. The SAMD21 Mini Breakout is a Pro Mini-sized breakout for the Atmel ATSAMD21G18, a 32-bit ARM Cortex-M0+ processor with 256KB flash, 32KB SRAM, and an operating speed of up to 48MHz. This mini breakout provides you with an Arduino hardware option that solves the problems of low storage limits and dynamic memory stack overflows that have plagued the previous iterations of the Arduino family. Yes, the SparkFun SAMD21 Mini Breakout is even fully supported in the Arduino IDE and libraries for the Arduino Zero!
Features:
Documents:
The goal of placing the microcontroller on one side of the PCB is to better manage the space and avoid crossing cables that in the future will be a problem.
After having the PCB ready I proceeded to use a motor tool and to open the holes of the pins of the microcontroller and in each of them to weld wire to him to weld the microncontrolador to the PCB.
Finally connect the microncontrolador with the objective to verify that there were no errors and to measure continuity between the tracks and the pins of the microcontroller.
This screen offers you in the back, 6-pin SMD ready to be welded together with the tape driver pins. We must take care that at the time of soldering, the pins do not come in contact with. As for being close to each other can make a mistake and solder them the wrong way.
The communication protocol that you use in the watch was SPI, I was not able to perform the communication by the I2C protocol.
Pines:
Screen OLED_____SAM21
MOSI_______________7
CLK________________6
DC_________________9
CS_________________11
RESET______________8
The library has examples where it is necessary to configure the microcontroller pins and to be connected to the OLED screen
Description:
The MAX30100 is an integrated pulse oximetry and heart-rate monitor sensor solution. It combines two LEDs, a photodetector, optimized optics, and low-noise analog signal processing to detect pulse oximetry and heart-rate signals. The MAX30100 operates from 1.8V and 3.3V power supplies and can be powered down through software with negligible standby current, permitting the power supply to remain connected at all times.
Key Features:
Its size is one of the most important features, as it is very flexible to find a location on the clock. But there is also a big problem, it happens at the time of soldering the pins to a printed circuit board, we must be very precise in the placement and the bolts on both sides match.
Scheme
In one of the images, you can see a diagram where the sensor and the 1.8V regulator are located, it is not exactly the diagram used in the clock, the regulator is different.
Library:
A year ago was very little information support for the management of the sensor, had the manual of the sensor but it was a bit tedious to understand. But to this day there are already some libraries of support that allows us to handle the sensor to perfection, I will upload the library you need if you want to create your own porject with the sensor.
The library works perfectly with arduino one and arduino nano.
One of the parties challenging the clock, it was soldered the sensor to the PCB, after several failed attempts and 3 damaged sensors, opt for to apply tin on the pins of the sensor, and not just on the pins of the PCB, and then let the heat gun do its job. Warning, the heat gun can't exceed 175° C, because the sensor starts to suffer from deformation in its plastic material and finally dañarce.
The protocol of communication is I2C, and the address for access to records by default is 0x58.
Pins needed:
Pins 2 and 3 (SCL,SDA) are connected to SCL and SDA of the microcontroller.
Pins 4 and 12 (PGND,GND) are the same, do not get confused by the P.
Pins 5 and 6 (IR_DRV,R_DRV) are used to control an led directly without the need to program the sensor.
The pins 9 and 10 (IR_LED,R_LED) are connected internally. One of you must be fed with 3.3 V
One of the great advantages that I had in the design of the buttons for the clock is to use a single analog pin (A3) in the reading of the state of each one of the 3 buttons.
Using the theory of the divisor of the voltage you can get a keyboard with a single output voltage that will be read by a port analogous of its microcontroller.
I will keep the basic programming to use this form of keyboard using only one pin of our microcontroller.
Note: The resistors can all be of the same value and don't forget to change the values in the code according to the values that are entered by your analog pin.
At the time of soldering the buttons I had in mind the temperature of the heat gun, because the buttons are manufactured in-house with plastic and it melts with ease.
In the case of the clock, use only three keys:
The values of the 4 resistors were 1.2 KΩ. And another of the advantages of using keyboards for the voltage divider, is to avoid the use of a greater amount of cables, only were required 3 pins.
Note: The design PCB software Eagle PCB I'll leave at the end of the instructable.
This was one of the first tests of the circuit, I needed to verify that the buttons could navigate the menu without problems.
Seek to design a housing for the Arduino Watch Sport 2.0 that was not sharp, that would handle curves in its design. After a long time of having the imagination running I get the time to design it and the conclusion to which you arrive is the image that they see.
The next step now, was to design it in 3D, it was not an easy task because I had already tried several software of design 3D but to me they were complicated to learn. Thanks to the classes of instructables, I found a tutorial on using the software, FUSION 360, in fact it is an excellent tool for 3D designs, it was very easy to do the design I had printed on paper and the result was the following.
My goal was to reach an exact design that I had imagined and drawn on paper, to do this I take a cafe, and I started to learn about all the tools that had the Software FUSION 360. After a long time I got to the task of designing the two pieces that needed the clock. having a good result.
A year ago I gave this watch to use very little since that damage with ease, make the decision to save it knowing that one day he would need, then I look through my saved things because he needed the straps for the Arduino Watch Sport 2.0. I only had to use tweezers to release the latches and were already free of the straps.
The application complies with the function of capture, and read the notifications from the social networks arrive in the cellular, the calls and text messages, to be sent via bluetooth to the watch.
In a next version of the watch, we will create the option that the application is synchronized with the data clock.